论文网

银行招聘

校园招聘

教师资格证

公务员考试

我要自学网

教师招聘试题

CAD教程

医院招聘

教育局

兼职招聘

工作总结

招工信息

实习生招聘

卫生人才网

您当前的位置:首页 > 科技论文 > 数学论文
| 科技小论文 | 数学建模论文 | 数学论文 | 节能减排论文 | 数学小论文 | 低碳生活论文 | 物理论文 | 建筑工程论文 | 网站设计论文 | 农业论文 | 图书情报论文 | 环境保护论文 | 计算机论文 | 化学论文 | 机电一体化论文 | 生物论文 | 网络安全论文 | 机械论文 | 水利论文 | 地质论文 | 交通论文 |

用Jordan标准型给出方阵的(图文)

来源网络

论文导读:本文只是利用Jordan标准型给出了非奇异方阵和零特征值指标为1的方阵的任意次方根,而矩阵的根显然不是唯一的。
关键词:Jordan标准型,次方根,谱性质

  1 引言矩阵的Jordan标准型在矩阵理论中有着重要的应用,由于矩阵的多项式函数与矩阵本身的良好关系和其他类型的解析函数都可以表示成矩阵的多项式函数,故用矩阵的Jordan标准型来处理与矩阵函数有关的问题就方便得多。本文就是从这一点出发研究了矩阵的任意次方根。免费论文网。由于是平凡的情况,故对文中的所有值都取大于1的任意自然数。
  首先,我们指出用到的定理7的不完善之处,并给出了相应的补充,即引理1。
  定义1 设矩阵,且知道它的最小多项式是, 其中,个不同特征值,的指标,。那么对任意复值函数,只要保证各式有意义,就说是定义在谱上的。
  文献[2]第111页的定理7:设分别是定义在上与的谱上的复值函数,又设,则为定义在上的复值函数,且
  该定理存在的问题:定理的证明用到“函数的谱上的阶导数”,这一点在定理的条件“定义在上”下是不能保证的。也就是说命题“函数的谱上的阶导数”不一定存在。下面给出反例来说明这一点:
  反例:设矩阵,取,则有是一个零阵。取,则上有定义,但上无定义。

由一道积分计算题得到的启示(图文)
遗传算法在多校区排课系统中的应用(图文)

来顶一下
返回首页
返回首页
 
相关文章
    无相关信息
栏目更新
栏目热门